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Abstract

We identify two critical data-related errors in the work of Ouazad and Kahn (O&K, RFS
2021). Correcting either one of these errors, or both, reverses their original results and
eliminates the claimed effect. We document this when using their original data and code.
We also perform our entirely independent analysis, which finds no effect as well. However,

introducing the two errors into our code generates statistically significant results similar to

those O&K report.

The two corrections we implement are to use the correct FHFA conventional loan limits for
each county and year and to compare the individual loan amount to that limit accurately.
Our results show that there is no statistical evidence that lenders alter their loan origination
and securitization behavior in affected areas following a major hurricane. While our findings
show that lenders have not transferred climate risk to mortgage insurers in the past, this

could occur in the future, especially if climate risk becomes easier to estimate and/or worsens.



1 Introduction

Ouazad and Kahn (O&K, RFS 2021) claim that mortgage lenders change their lending
behaviour following a major hurricane. Specifically, O&K claim that lenders originate more
loans that are eligible for securitization and also securitize a larger portion of the loans in
affected areas. If true, this finding would imply that institutions that securitize mortgages
or have exposure to losses from securitized mortgages are subject to adverse selection at the

loan origination stage.

We repeat O&K’s analysis using both their original data and code as well as our own entirely
independent data retrieval and analysis. In doing so, we identify two data processing errors
in the original work. Correcting either of these errors reverses the findings reported in O&K’s
paper. We document this conclusion using both the original data and code and also our own
independent analysis. Furthermore, if we introduce the two data processing errors into our

code, we find statistically significant results similar to those O&K report.

In other words, the two errors generate significant results both in the original code and in
our implementation. Correcting either of the two errors eliminates the significance of the

results both in the original code and in our independent implementation.

The Federal Housing Finance Agency (FHFA) specifies precise loan amount limits for a loan
to be eligible for securitization through the two Government-Sponsored Enterprises (GSEs),
Fannie Mae and Freddie Mac. This limit is known as the ”conventional loan limit” and is
a statutory requirement.! For instance, the conventional limit in Collier County, Florida in
2012 was $448,500, meaning that only loans originated up to and including this amount were

eligible for securitization. These loan limits vary by county and through time.

These precise conventional loan limits generate a well-documented discontinuity of loan orig-

!Conventional loan limits are readily available at https://singlefamily.fanniemae.com/originating-
underwriting/loan-limits



inations just above and below the limit. O&K use this discontinuity to find that loans
originated just below the limit increase relative to loans originated just above the limit in
affected areas following a major hurricane. If correct, such a finding would suggest that
loan originators alter their behavior to make more loans eligible for securitization in affected

areas.

We document two inaccuracies in O&K’s data processing. First, their final data used for
model estimation contains only two conventional limits for each year - ”standard” and ”high-
cost”. For instance, in 2012, all counties in their data have limits of either $417,000 or
$625,500. While the standard limit at the time was indeed $417,000, each ”high-cost” county
had its own specific limit. For instance, the FHFA limit for Collier County, Florida in 2012

was $448,500, while the limit in O&K’s data for that county was incorrectly set at $625,500.

The second inaccuracy in O&K’s data is in the comparison of each loan amount to the
conventional limit. The HMDA loan origination data contains loan amounts rounded to
the nearest $1000, while the FHFA loan limits are reported to the dollar. For instance,
the standard conventional loan limit in 2005 was $359,650. Loans originated near or at the
limit that year are reported in the HMDA data as having loan amount of “360” to denote
a rounded amount of $360,000. Thus, a direct comparison of the loan amount ($360,000)
to the conventional limit ($359,650) results in misclassification of the loan as being above-
limit. The following year, 2006, the conventional limit changed to $417,000, which would
not generate any misclassification. In this example, the originations below the limit would
appear to have substantially increased (originations above the limit decreased) from 2005
to 2006 even though there was no such increase (decrease). While this is only one specific
example, it is noteworthy because five hurricanes occurred in 2005, and the apparent increase
in below-limit originations was incorrectly attributed to an effect from these hurricanes rather

than to the change in loan classification from 2005 to 2006.

Section 4.3 below details the above issues and quantifies their significance and prevalence



in the data. As a summary, correcting either of the above discrepancies, or both, reverses
O&K’s original results and shows that there is no evidence lenders altered their origination
behavior in affected areas following a major hurricane. Therefore, there is no evidence of

unpriced climate risk, as O&K originally claim.

The above empirical findings aside, it is not clear to us that the original identification of
treatment and control groups is appropriate. O&K use estimated or actual damage following
a hurricane to identify the treated observations. While each storm can revise the way we
estimate future risk, those revisions are not confined to the area affected by the particular
event. Instead, risk estimate revisions are likely based on certain geographic features and,
therefore, extend well outside the affected area. For instance, a particular storm may change
how we think about elevation or distance to water, but this change would apply everywhere,
not just inside the storm path. Therefore, the treatment observations would be the ones

with revised future risk estimate, regardless of their proximity to the particular storm.

Finally, while our findings suggest that lenders do not alter their lending and origination
behavior in a statistically discernible way, at least in terms of the original identification
method, this could change in the future. As climate-related disasters increase in magnitude
and frequency, it is possible that lenders take steps to reduce their exposure to risk areas. One
way of doing so is to increase the securitization of loans originated in risk areas. Therefore,

we believe that continuous monitoring of lending and securitization in risk areas is prudent.

We discuss the data selection and methodology in detail below. Following this, we present
the results of various data selection and estimation methods. Finally, we conclude with
an overall summary and suggestions for future monitoring of climate risk-related lending

behavior.



2 Literature Review

Kousky et al. (2020) offer an in-depth overview of flood risk and flood insurance effects
on the U.S. housing market. They identify several mechanisms that lead to a substantial
portion of homeowners who are either under-insured or not at all insured against flood risk.
In addition to the devastating effects this can have on individual households, the authors
note that uninsured losses may be passed to lenders, servicers, and ultimately to taxpayers.
The authors note that while insured property damage improves loan performance, there
are several mechanisms that can expose a lender or a loan guarantor to losses, including
under-insurance of mortgaged properties and uninsured nearby properties which are then

left unrepaired following a disaster.

Ratnadiwakara and Venugopal (2020) also investigate the effects of flooding and find an
increase in interest rates and increase in securitizations in affected areas. The authors doc-
ument a particularly interesting mechanism that drives these findings, namely, that areas

subject to disaster events attract less afluent and less creditworthy homebuyers.

Kousky et al. (2020) further offers a comprehensive review of the literature that links
home prices to flooding and other climate-related risk. The general finding of this literature
is that homes in floodplains and other high-risk areas have lower values than comparable
homes outside those areas. (MacDonald et al., 1990; Harrison et al., 2001; Bin et al.,
2008; Daniel et al., 2009; Bakkensen and Barrage, 2017; Ortega and Taspiar, 2018; Zhang
and Leonard, 2018; Bernstein et al., 2019; Tibbetts and Mooney, 2018; Kusisto, 2018).
However, as documented by Bin and Kruse (2006) and Bin et al. (2008), this analysis is often
complicated by the attractive amenities that floodplains often provide. This complication
makes fully conclusive and robust results difficult to obtain. Nevertheless, taken in aggregate,
the evidence is strong that flood risk does have a negative impact on home values. The effect

is less clear for other climate-related risks, mostly because the identification of high-risk areas



and homes is harder to define.

The impact of flooding and other risks on individual properties is magnified by the impact
of disaster events on entire neighbourhoods. This impact is sometimes due to infrastruc-
ture damage, but more often due to a high concentration of homes that were damaged but
not repaired. For instance, Kotkin (2014) shows that the number of blighted properties in
New Orleans nearly doubled following Hurricane Katrina. Similarly, as already mentioned,
Ratnadiwakara and Venugopal (2020) document that home prices fall following a natural
disaster and the income distribution of home buyers in the affected areas changes. Earlier
studies, such as Masozera et al. (2007) and Vigdor (2008), also document how natural dis-
asters affect different neighbourhoods in very different ways. These findings are important
because they suggest that even if a lender or mortgage insurer strictly enforces the require-
ments for appropriate property insurance for all borrowers, it is still exposed to the risk of

neighbourhood decline and the resulting decline in property values.

Regardless of the exact mechanism through which flooding and other natural disasters neg-
atively affect home values, the prevalence of this effect is sufficient grounds for lenders and
mortgage insurers to monitor their exposure to such risks. This finding underscores the im-
portance of monitoring potential adverse selection in the underwriting and securitization ac-
tivities of lenders and insurers as no institution would want to have a more-than-proportional

exposure to climate risks.

Beyond the impact on property values, natural disasters impact households in several other
ways. For instance, Gallagher and Hartley (2017) investigate how households affected by
Hurricane Katrina adjusted their finances. They find that any increases in credit card and
other debt following the disaster were short-lived. Long-term households in damaged areas
reduced overall borrowing, primarily because they used flood insurance payments to reduce
their mortgages. This was particularly the case if the pre-disaster home values were near or

below the cost of re-building.



However, a research report by the Urban Institute (2019) documents a very significant finan-
cial impact on affected households. It shows that natural disasters have a negative impact
on credit scores and mortgage performance and lead to increases in credit card and other
high-cost debt. Contrary to Gallagher and Hartley (2017) findings, the Urban Institute

(2019) identifies many cases in which these effects persist and worsen over time.

Perhaps a way to reconcile the two studies above is through the work of Kousky et al.
(2020) who show that flood insurance acts as intended and protects homeowners and mort-
gage lenders from the immediate effects of a disaster. However, as discussed above, not all
homeowners have insurance and, even if they do, it does not protect them against overall
neighbourhood decline. Therefore, it is possible that insured households are protected and
either rebuild, or, at the very least, repay their mortgages using insurance payouts. However,
uninsured homeowners, and homeowners in neighbourhoods that are severely affected as a
whole, suffer substantial negative consequences which in many cases persist over time. On
the other hand, rebuilt homes are newer which, in turn, can have an overall positive impact

on the neighbourhood.

3 Data and Methodology

In what follows, we describe the data sources, the data definitions, and the estimation
methods we utilize. We comment on the reasons for our choices and, when possible, provide
alternatives that we have utilized as robustness checks. We further provide comparison to
the methods used by O&K both throughout the data and methodology sections and in a

separate section below.



3.1 Data Sources

This section describes the data sources and processing that we perform for our independent
analysis. We are also grateful to Ouazad and Khan for sharing the data and code for their
final model estimation. As stated above, the reversal of the original result occurs both in

O&K’s original data and code and in our independent analysis described below.

3.1.1 Loan origination data

Our primary source for mortgage application, origination, and securitization data was col-
lected under the Home Mortgage Disclosure Act (HMDA). This data provides detailed mort-
gage data at the census tract level, which is the primary level of geographic analysis we use.
The specific data is available from the National Archives Catalog (Non-restricted Ultimate
Loan Application Registers) for the period 1995 to 2014 and from the Consumer Financial

Protection Bureau for the period 2015 — 2020.2, 3, 4

For each reported loan application, this data set includes the lending institution, loan
amount, borrower income, race, and ethnicity. The data also contains the census tract
of the property, the type of property (1-4 family, manufactured housing, or multifamily), the
purpose of the loan (home purchase, home improvement, or refinancing), owner-occupancy
status of the property, loan preapproval status, and the outcome of the application (loan
denied, loan approved but not accepted, loan withdrawn by the applicant, loan originated,
or loan purchased by the lending institution). The data also includes information about the
type of institution which purchased the loan and whether it was sold in the same calendar

year. The data uses the 1990 census for 1995 to 2002 applications, the 2000 census for 2003

’https://catalog.archives.gov/search?q=+:*&f .ancestorNalds=2456161&sort=naldSort%20asc

3https://www.consumerfinance.gov/data-research/hmda/historic-data/

40&K use a combination of final and ultimate LARs in different years. While in our base case we always
use the ultimate LARs, we have also replicated O&K’s analysis using the mix they employ.


https://catalog.archives.gov/search?q=*:*&f.ancestorNaIds=2456161&sort=naIdSort%20asc
https://www.consumerfinance.gov/data-research/hmda/historic-data/

to 2012 applications, and the 2010 census for applications afterward.

HMDA groups all properties with 1 to 4 units into a single category. This represents a po-
tential challenge because properties with 1, 2, 3, and 4 units have different conventional loan
limits. In our analysis, we use the 1-unit conventional limit for all loans in our analysis. We
justify this necessary simplification on the basis that only a very small portion of multifamily

homes are owner-occupied.

We filter the HMDA records as follows:

e Include only loans in the states from Maine through Texas that are along the Atlantic

coast,
e include only conventional loans (i.e., any loan other than FHA, VA, FSA, or RHS),
e include only loans for owner-occupied home purchase,
e include only loans for one to four family housing,
e exclude manufactured housing,

e exclude borrowers who had income exceeding $5,000,000 or loan-to-income ratios above

4.5 or below 1,°
e exclude applications with missing or invalid census tract information, and
e exclude loans with missing income information.
The HMDA data includes many loan outcome categories and classification of approved and

securitized loans is subject to some uncertainty. Therefore, we focus our analysis on origi-

nated loans, which are clearly identified in the data. Nevertheless, we present securitization

50&K’s paper specifies the same exclusion. However, we have been unable to ascertain whether this
exclusion has been applied in the implementation or not. Regardless, we perform our analysis both with and
without this exclusion.
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analysis as well, and we have performed robustness checks using alternative loan outcome

classifications.

As discussed in the methodology section below, our analysis relies on the loans originated
just above and just below the conforming loan limit. Specifically, we consider loans that
were within +/- 5%, +/- 10%, and 4 /- 20% of the single unit conforming loan limit. This

limit varies by year and county and is available from the Federal Housing Finance Agency.

Our main estimation method uses indicator variables that capture loan originations for four
years before and after each hurricane. When this window overlaps with the transition in
the HMDA data from using the 1990 census to the 2000 census, and from the 2000 census
to the 2010 census, we provide consistent definition of affected and non-affected areas. To
do so, we match the census tracts in the earlier and the later census by the largest share of

population.

The above use of the HMDA data generally follows the methodology of O&K as described
in their paper. The biggest difference is that that we focus our analysis on census tracts,
while O&K report all of their results using postal zip codes. Nevertheless, as a robustness
check, we perform our analysis at the zip code level as well. We convert census tracts to zip

codes using the US Census Bureau relationship files.®

O&K further report that they merge the HMDA data with the Black Knight McDash data,
although we have not been able to ascertain this in their implementation. Regardless, such a
merge is not needed for our work as the original HMDA data already allows for the analysis
of the approval, origination, and securitization outcomes. Therefore, we have only used the

original HMDA data without merging it to other loan origination data sets.

Chttps://www.census.gov/geographies/reference-files/time-series/geo/
relationship-files.2000.html
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3.1.2 Hurricane Wind Path Data

We obtain hurricane wind data from the NOAA HURDAT? dataset.” This data includes
hurricane location, wind speed, and atmospheric pressure data from 1851-2019, sampled

every 6 hours. Hurricane size data, presented as wind speed radius by quadrant, is available

from 2004.

We apply the following filters and calculations to this data:

e Only hurricane observations since 2004 were considered. We provide results both for
the original sample (2004 to 2012) and for an updated sample to 2016. We require
data for at least 4 years after a hurricane, so events after 2016 were not considered
in the base case. As a robustness check, we have also estimated the model using all
events up to 2018, but only with two-year before and after comparison. Table 1 lists

the hurricanes we consider in our base case analysis.

e For each hurricane observation, we calculate the distance between the hurricane center
and the internal point latitude and longitude of each census tract. Census tracts were
flagged as affected if the distance was less than the 64 kt wind radius in the relevant
quadrant. Census tract internal point locations were taken from the US Census Bureau

Gazetteer files.®

We use census tracts both for identification of treatment and for our main analysis. As a
robustness check, we also convert census tracts to zip codes, as discussed above. Table 1
lists the hurricanes used in our base case analysis. In one of our robustness specifications,
we also utilize hurricanes that occurred in 2017 and 2018: Harvey, Irma, Maria, Florence,

and Michael.”

"https://www.nhc.noaa.gov/data/

8https://www.census.gov/geographies/reference-files/time-series/geo/gazetteer-files.
html

90&K use the same events up to and including Hurricane Sandy.

12
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Name of Hurricane | Year of Hurricane
CHARLEY 2004
FRANCES 2004
IVAN 2004
JEANNE 2004
DENNIS 2005
KATRINA 2005
OPHELIA 2005
RITA 2005
WILMA 2005
DOLLY 2008
GUSTAV 2008
IKE 2008
IRENE 2011
ISAAC 2012
SANDY 2012
MATTHEW 2016

Table 1: List of hurricanes considered in our analysis. This table lists the hurricanes we define as disaster events in our
base case analysis. We further include the additional hurricanes that occurred in 2017 and 2018 in one of our robustness tests.

13



3.1.3 Wetlands/Open Water

We use wetlands and open water data from the USGS 2001 National Land Cover Database to
identify areas at risk.!® This is a single GeoTIFF raster image file that contains geographical
land cover information, including the locations of wetlands and open water. We calculate
the minimum geodesic distance from the internal point latitude and longitude of each 2000

and 2010 census tract to wetland or open water with ArcGIS.

In our analysis, we define a census tract to be near wetland or open water if its internal

point is within 1.5 km of the respective geographic feature.!!

3.1.4 Coastline

We further define coastline based on the NOAA Medium Resolution Shoreline, which is de-
scribed by NOAA as a “high-quality, GIS-ready digital vector data set created for general
use” and covers “over 75,000 nautical miles of coastline, ... representing the entire conti-
nental United States of America”.'? We calculated the minimum geodesic distance from the

internal point latitude and longitude of each 2000 and 2010 census tract to the shoreline

using ArcGIS.*?

3.1.5 Elevation

Our elevation data comes from the USGS Digital Elevation Model.'* The model is a seamless

1/3 arc-second resolution dataset, with ground spacing of approximately 10 meters north

Yhttps://www.mrlc.gov/data/nlcd-2001-1and-cover-conus

Q&K report performing this identification at the census blockgroup level. It is unclear why this was
necessary, as O&K’s statistical analysis is performed at the postal zip code level. We performed our analysis
at the census tract, zip code, and county levels.

2https://shoreline.noaa.gov/data/datasheets/medres.html

13In a manner similar to wetlands, O&K use blockgroups to identify subject observations. It is not clear
why this was needed, as their statistical analysis is at the postal zip code level.

“https://apps.nationalmap.gov/downloader/#/
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and south. Our data is comprised of a series of raster images dated 2019-2021. We obtained
GeoTIFF tiles for each of the 18 Atlantic states from the National Map Downloader and
imported and merged them in ArcGIS. This allows us to calculate the minimum elevation

for each 2000 and 2010 census tract polygon.

3.2 Identification of Treatment Observations

A key step in performing the analysis we describe below is the identification of treatment
observations, that is observations that fall in an area that experienced damage. Note that
the goal is not to identify damage to specific properties but instead to identify areas (census
tracts, zip codes, or counties) that experienced damage from each of the hurricanes we

examine.

Except for Hurricane Sandy, there are no publicly available measures of damage at the
geography level we require. Therefore, we define treatment areas, meaning areas that were
likely subject to damage, using wind speed, distance to water, and elevation data. We

identify the treatment areas as follows:

Center of census tract is within the 64-knot wind radius of each hurricane

Census tracts with minimum elevation below 3 meters,

Census tracts within 1.5 km from wetland, open water, or shoreline,

For the specifications based on zip codes, a zip code was defined as treated if it had at

least one census tract that was treated.

There is one instance in which actual damage data is available — Hurricane Sandy. For

the regressions that used actual damage data, we treated a census tract if the census tract

15



reported damage in the FEMA damage survey, which covers block groups with at least ten

damaged units.

We further repeat our analysis with the NOAA Sea, Lake, and Overland Surges from Hurri-
canes (SLOSH) data by treating zip codes where the average storm surge height is estimated
to be greater than 1 foot and are within the 64 kt wind radius of each hurricane. We have
also used the same data to identify treatment areas, as an alternative to the identification

described above.

As a measure of robustness, we create several classification tree predictors of damage from
Hurricane Sandy using the variables described above - whether the census tract is in the
64 kt hurricane path, the CT’s minimum elevation, the CT’s distance to wetland, and the
CT’s distance to shoreline. In some cases, we also incorporate additional variables, such as

income per capita, poverty rate measures, and property market characteristics.

Furthermore, we also replicate the main analysis using various sub-samples. For instance,
we limit the sample to “large originators”, which we define to be institutions with at least
14,000 or 20,000 loan applications in the HMDA data. We also create an alternative filter

for “largest originator only”.

Finally, in addition to census tracts and zip codes, we use counties as a geographic unit for
our analysis. For “counties at 50, 100, 200 mi from center of hurricane”, we define as treated

all the CTs in counties that meet those distance conditions.

O&K identify a treated observation if more than 40% of the blockgroup surface area within
the zip code for that observation had predicted damage. However, blockgroups and census
tracts do not aggregate into zip codes in a clean way. Even in a single point in time, many
blockgroups and census tracts fall in two zip codes. Furthermore, many 1990, 2000, and 2010
census tracts have overlapping boundaries, further complicating the consistent identification

of treated observations, especially when the main unit of geographic analysis is zip codes.
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This is one of the reasons to use Census Tract as the geographic unit of analysis, as we have
done in our base case estimation. However, we also repeat O&K’s approach as a robustness

test.

3.3 Estimation Method

We follow O&K in estimating the following regression model:

Outcomey =aBelowCon formingLimitj,q.q) + yBelowCon formingLimit;j, ..y x Treated;

+T
+ Z §Treatedy X Time;
t=—T
2016
+ Z §yBelowCon forming Limit;j, . q) X Y earyq
y=1995
+T
+ Z d¢BelowCon forming Limit;jy..a) x Treated;;y x Time,
t=—T

+ Yearyy,q + Disastery + CTj;) + €

(1)

where ¢ represents the loan application, j(i) represents the geographic region (census tract)
of the loan application and d = 1,2,...,16 indexes the hurricanes. The first and third sum-
mations run from ¢ = -4 years prior to the hurricane to t = 44 years after the hurricane,
and exclude t = -1, the reference year. Outcome; is an indicator variable that specifies
whether the application was approved, originated, or securitized, depending on the regres-
sion. BelowCon formingLimit;j,.q) specifies whether the loan amount was at or below the
conforming limit for the year and county in which it was requested. Treated;;) specifies
whether the loan was requested in a treated census tract. For this variable, the value was

set to 1 for applications in census tracts that met the treatment group conditions at least
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once, regardless of which year they were impacted. Yeary, is a series of indicator variables,
representing the year in which the loan was requested. The Time, variable, in the first and
third summations, indicates if the loan was requested at T-4, T-3, ..., T+43, T+4 years
since the CT was treated by a hurricane, excluding the reference year T-1. Disastery is
a series of indicator variables representing each hurricane, specifying whether the loan was
in a CT affected by hurricane d. In the last line of the equation, the Year, Disaster, and
CT variables were controlled for, but their coefficients were not reported, due to the large
number of variables (23,700 CTs, with each CT having its own variable, and 5,100 ZIPs).
When necessary, CT was replaced with ZIP. All standard errors are two-way clustered by

geographic region and year.

When adding the more recent hurricanes to 2018, we restrict t to -2 to +2, as this allows us

to include more recent hurricanes and still consider the post-disaster origination history.

We estimate the regression model above with the linear fixed effects package in “R”. This
package “transforms away factors with many levels prior to estimating an OLS regression.
This is useful for estimating linear models with multiple group fixed effects, and for estimating
linear models which uses factors with many levels as pure control variables.” In other words,
this package is specifically designed to estimate linear regression models when using multiple
group fixed effects, such as CTs/ZIPs/Counties in our implementation. The package also

allows for multi-way clustered standard errors.
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4 Empirical results

4.1 Base Case

Table 2 reports the main finding of our analysis using the base-case methodology and sample
construction we describe in sections 3.1, 3.2, and 3.3 above. This table uses census tract as
the geographic unit of analysis. It reports the results based on approved, originated, and
securitized loans using sub-samples that are within 5, 10, and 20 percent of the conventional
loan limit for each census tract and each year. The conventional limit for some counties
changed mid-year in 2008 and in 2011. In our base case analysis, we have used the limits
from the first part of those years, before the change. We have also repeated the analysis
using the limits from the second part of those years, and with excluding observations from

those two years completely. Neither of those alternative methods materially alter the results.
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Table 2 reports the results of our base case estimation. The reported coefficients are the
interactions between a loan being below its respective conventional limit with being in a
treated area, meaning area with substantial damage, and being approved, originated, or
securitized in a specific year with a four-year window around each event. The coefficient

estimates of particular interest are those following each hurricane, denoted by T+1 to T+4.1°

The estimation uses the complete model specification as described above. The table reports
only the interaction effects of interest — Below Limit x Treated at time — 4 years to + 4
years relative to the hurricane that treated each respective observation. In other words,
the coefficient estimate we report in the table is for the interaction that captures a loan
that is below its conventional loan limit, is in a census tract that was treated, meaning
damaged as defined above, and was originated or approved four years prior to the respective
hurricane, three years prior, and so on up to and including four years after the hurricane. The
interaction term for one year prior to the hurricane is omitted, as required by the indicator

variable estimation methods.

The coefficient estimates for the interaction terms reported in Table 2, therefore, capture
the difference between originations or approvals above and below the conventional limit for
treated census tracts within a four-year window before and after each event. The interaction
coefficients for the years after a hurricane are of particular interest because they capture the
change in the difference between below and above limit originations in treated areas following
a hurricane relative to this difference in areas that were not treated. Positive and significant
coeflicients for the interaction terms in years t+1 to t4+4 would suggest that lenders increase
originations below the conventional limit in affected areas following a hurricane. Such a
finding, in turn, would suggest that, following an event, at least some of the increased risk

of future events is transferred to mortgage insurers.

15We note that the securitization data are subject to some noise because loans originated in one year but
securitized in a subsequent year may not be properly flagged as "securitized” in the HMDA data. Therefore,
we base our conclusions primarily on the approval and origination data, and report the securitization results
only to be consistent with O&K’s work.
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As reported in Table 2, of the total of 36 regression coefficient estimates for the years following
a hurricane (denoted as t+1 to t+4) not even one is positive and significant. Statistical
significance apart, the coefficients for the year after a hurricane, denoted as t+1, are very
small and in some cases even negative. For instance, the coefficient for originations in
the year following a hurricane for the 5% window around the conventional limit is 0.004.
This coefficient is also precisely estimated, with a standard error of 0.008. The 95 percent
confidence interval for this coefficient is, therefore, -0.012 to 0.02, making it indistinguishable
from zero. The coefficient for approvals is even negative, at -0.003, and is even more precisely

estimated with a standard error of just 0.007.

This leads to the conclusion that in our base case analysis, there is no detectable increase
in the below-limit originations relative to above-limit originations in affected areas relative
to non-affected areas following a hurricane. In other words, there is no evidence that an

increase in future risk is transferred to mortgage insurers.

Table 2 contains some coefficient estimates, particularly for the interaction for four years
following a hurricane, that are statistically significant. However, these coefficients are un-
likely to capture an actual effect, as they occur in isolation with coefficients for one, two, and
three years following a hurricane being indistinguishable from zero. Furthermore, all those
significant coefficients are negative. Even if taken at face value, these results only further

rule out the possibility that below-limit originations increased following a hurricane.

For comparison purposes, we replicate the analogous table from O&K in the Appendix. In
addition to the difference in estimated coefficients, our results are based on nearly twice as
many observations, even more in the case of 20% distance from the conforming loan limit.
It is also not clear how in O&K’s analysis the number of observations in the 10% and 20%

distance from the conforming limit is nearly identical.

The Appendix also provides the results of our base case implementation using zip codes,
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rather than census tracts, as the unit of geographic analysis. Since the original loan data
is provided at the census tract level, we see no particular advantage in using zip codes. We

only provide these results to facilitate comparison to O&K’s work.

4.2 Robustness Analysis

Our base case analysis presented in the previous section incorporates the model and data
selection choices that we believe are most appropriate to address the issue at hand. However,
the analysis is complex and offers numerous opportunities to implement alternative methods
that are also reasonable. Table 3 summarizes the base case and the alternative specifications

we have considered.
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Method

Base Case

Implemented Alternatives

Unit of geographic

analysis

Census tract

Postal Zip Code

County (within 50, 100, or 200 mi from center of hurricane)

HMDA time window

1995-2020

2004-2012, 1995-2016, 2004-2016, 1995-2017, 2004-2017

HMDA data classifica-

tion

All Ultimate LARs (includes
corrections up to 18 months

following initial submission)

Mix of Final and Ultimate LARs

— Final LARs are a snapshot of the loan register at the end

of filing period

Hurricane dates

2004-2016

2004-2012, 2004-2018, 2013-2018, 2004-2017, 2013-2017

Damage identification

Detailed method described

above

SLOSH model (1 ft surge)
Own classification tree models based on Sandy actual damage,

implemented to the entire sample

— Variables included share of CT in wetland, distance to hur-

ricane center, average elevation in CT

Counties < 50, 100, 200 mi from hurricane center

2-year combined treatment dummies

Limit sample to large originators only (minimums of 5,000 to
20,000 observations after other filters were applied)

Actual damage (only available for Sandy)

Census tracts with more than 3 (or 6) treated observations
before and after event

Limit sample to small originators only (maximums of 200 to
500 observations after other filters were applied)

Limit sample to single largest originator

Continued on next page
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Method Base Case

Implemented Alternatives

Data sub-samples All data

Limit data to flood plains only

Limit data to observations in counties with 14, 3+, or 5+
treated CTs

Limit data to observations in states with 14, 34, or 5+
treated CTs

Exclude applications classified as incomplete or withdrawn
before a credit decision was made

Exclude pre-approvals

Exclude observations in treated ZIPs or CTs that occurred
outside of T-4 to T+4 window

Remove filters on income or loan-to-income

Dependent variable e Originated

definitions .
— action taken = “Loan

Originated” vs all others
e Approved

— action taken = “Loan
Originated” or “Loan ap-
proved but not accepted”

vs all others
e Securitized

— purchaser type  was
Gov't entities;  obser-
vations were restricted
to loans originated or
loans purchased by the

institution

Securitized
— Purchaser type was not "N/A”
Approved

— Loans not denied vs loans denied

Table 3: Summary of alternative specifications

With various combinations of alternative implementations and other minor variations, we

have estimated well over 100 individual models and data selection choices.



The majority of the above specifications generate results that are similar to our base case,
and do not identify any evidence of increased below-limit originations relative to above-
limit originations in treated areas relative to non-treated areas following a hurricane. We
have identified the following three exceptions to this conclusion: using actual damage from
hurricane Sandy, limiting the sample to large originators only and limiting the sample to

flood plains only

Actual damage data from hurricanes is generally not available. Therefore, in the base case
described above, we estimate the areas with likely damage based on whether they fell within
the 64-knot wind area, elevation, and distance to water. We also estimate this using alter-

native damage measures, such as the SLOSH model described above.

Actual damage is available for Hurricane Sandy. We replicate the analysis using the base
model specification but using actual damage rather than predicted damage to identify treated
census tracts. Table 4 presents our findings. In this case, the coefficient estimate for the
interaction term one year following Sandy, denoted as time t+1, is positive (0.043) and

statistically significant.
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Dependent variable:

Approved Originated Approved Originated Approved Originated
+5% +5% +10% +10% +20% +20%
1) (2) (3) (4) (5) (6)
belowLimit: Treatment: T _minus_4 —0.029** —0.040*** —0.045*** —0.042%*** —0.050*** —0.051***
(0.012) (0.014) (0.011) (0.012) (0.005) (0.007)
belowLimit: Treatment:T_minus_3 —0.154%*** —0.056** —0.149*** —0.093*** —0.138*** —0.095***
(0.020) (0.022) (0.012) (0.013) (0.008) (0.008)
belowLimit: Treatment:T_minus_2 —0.007 —0.064*** —0.039*** —0.068*** —0.014* —0.043***
(0.016) (0.016) (0.011) (0.013) (0.008) (0.011)
belowLimit: Treatment: T _minus_0 0.131%*** 0.126*** 0.016 0.009 —0.011 —0.010
(0.016) (0.015) (0.011) (0.014) (0.008) (0.010)
belowLimit: Treatment: T _plus_1 0.042%*** 0.043** 0.036*** 0.034** —0.003 —0.006
(0.014) (0.016) (0.012) (0.012) (0.007) (0.009)
belowLimit: Treatment: T _plus_2 —0.009 0.026 —0.024** 0.010 —0.023*** —0.003
(0.013) (0.017) (0.009) (0.009) (0.007) (0.008)
belowLimit:Treatment:T_plus_3 —0.008 0.017 —0.010 0.019* —0.007 0.012
(0.011) (0.015) (0.010) (0.011) (0.008) (0.009)
belowLimit: Treatment: T_plus_4 —0.011 —0.015 0.003 0.008 —0.002 —0.012
(0.013) (0.012) (0.009) (0.009) (0.006) (0.007)
Observations 1,614,208 1,614,208 2,610,326 2,610,326 4,756,808 4,756,808
R2 0.042 0.046 0.038 0.042 0.034 0.039
Adjusted R? 0.027 0.031 0.028 0.033 0.029 0.033

Note: Clustered standard errors in parenthesis.

Table 4: Loan Approvals and Originations Around Hurricane Sandy — Actual Damage.

*p<0.1; **p<0.05; ***p<0.01

The table reports the

estimation results for one of the three cases in which we find positive and significant coefficients following a hurricane. In
this case, we restrict our attention only to Hurricane Sandy and use actual damage data as reported by FEMA. Sandy is the
only major storm for which such data is publicly available. While the table reports several positive and statistically significant
coefficients, these results are not robust to alternative model specifications and are of limited economic significance.

While we report this result as one of the few cases in which we find a positive and significant
effect, we cannot assign very much economic significance to it. First, the result is not robust
to alternative specifications, such as the use of zip codes as a geographic unit of analysis or

other small model alterations. In those alternatives, we find no significant effect.
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Moreover, this result was obtained following numerous specification and data selection at-

tempts. Therefore, it could very well be due to chance and have little external validity.

Even if we take the results following Hurricane Sandy at face value, we note that originations
or approvals below the limit decrease relative to those above the limit prior to Sandy. For
the coefficients following the event to be meaningful, we would need to see no change in the
years prior to an event. This is known as the ”parallel trends assumption”, which is required
for the post-event coefficients to be meaningful. In other words, the post-event coefficients

reported in Table 4 have limited, if any, economic significance.

The second situation in which we identify a positive and significant result is when we limit
the sample to large originators only. For instance, limiting the sample to originators with
20,000 or more observations in the data generates the results reported in Table 5. While
the coefficient for one year after a hurricane is not significant, we do find some statistical
significance for the coefficient for two years after a hurricane, denoted by t+2. We observe

a similar pattern when we limit the data to large originators using other cut-off levels.

Once again, the statistical significance of the coefficient for two years after a hurricane does
not translate into actual economic significance. First, only the coefficient for two years
after an event is consistently positive and significant. All other coefficients, including the
coefficient on the year following a hurricane, are not significant, and even change signs across
the different specifications. Even if we take the significance in the coefficient for t+2 at face
value, we cannot conclude that origination behavior changes because none of the coefficients

for t+1 are significant.

Furthermore, same as the first exception, this result was obtained as part of numerous
alternative estimations. As such, it could very well be the result of random chance and

cannot be used to derive an economically meaningful relationship.
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Dependent variable:

Approved Originated Approved Originated Approved Originated

+5% +5% +10% +10% +20% +20%
1) (2) 3) (4) (5) (6)
belowLimit: Treatment: T _minus_4 —0.091* —0.026 —0.059* —0.027 —0.034 —0.020
(0.046) (0.034) (0.029) (0.022) (0.026) (0.018)
belowLimit:Treatment:T_minus_3 0.008 0.001 0.018 0.022 —0.012 0.001
(0.031) (0.048) (0.015) (0.014) (0.012) (0.012)
belowLimit:Treatment:T_minus_2 0.044 0.009 —0.002 —0.007 0.005 0.004
(0.065) (0.082) (0.033) (0.030) (0.023) (0.021)
belowLimit: Treatment: T _minus_0 0.003 —0.005 —0.001 0.005 —0.001 —0.005
(0.021) (0.024) (0.026) (0.032) (0.013) (0.015)
belowLimit:Treatment: T _plus_1 0.048 0.019 0.026 0.019 —0.013 —0.009
(0.035) (0.032) (0.025) (0.028) (0.024) (0.019)
belowLimit: Treatment: T _plus_2 0.080*** 0.090*** 0.053** 0.067*** 0.033* 0.041**
(0.020) (0.026) (0.021) (0.021) (0.017) (0.018)
belowLimit: Treatment: T _plus_3 —0.069 —0.096 0.052 0.016 0.010 —0.008
(0.137) (0.114) (0.063) (0.071) (0.049) (0.051)
belowLimit: Treatment: T_plus_4 0.261** 0.205 0.046 0.065 0.054** 0.060***
(0.121) (0.141) (0.037) (0.038) (0.024) (0.015)
Observations 248,386 248,386 585,422 585,422 1,312,987 1,312,987
R? 0.143 0.126 0.130 0.111 0.103 0.086
Adjusted R? 0.082 0.064 0.100 0.080 0.087 0.070
Note: Clustered standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01

Table 5: Loan Approvals and Originations Using Large Originators Only. This table reports the estimation results
for the second of the three cases in which we find positive and significant coefficients following a hurricane. In this case, we
restrict the sample to large originators only. While the table reports several positive and statistically significant coefficients for
two years following a hurricane, the coefficients for one year following an event are not significant., These results are also not
robust to alternative model specifications and, therefore, are of limited economic significance.

The final exception in which we find some positive and significant coefficient estimates is when
we limit the observations to census tracts that overlap with established floodplains. Table
6 reports this analysis, with several different definitions of whether census tract overlaps
with a floodplain or not. While most coefficients reported in this table are not statistically

significant or are negative, there are two coefficients in the 60 and 70 percent overlap level

29



that are positive and significant.

The above result is perhaps the closest to generating an overall positive and significant post-
treatment effect. Even so, we note that the coefficients in question are only positive and
significant with two overlap levels considered. Alternative specifications using lower or higher
overlap levels do not generate positive and significant coefficient estimates. Furthermore, the
coefficients for two, three, and four post-event years are not significant and/or are negative.
Taken together, these results suggest no overall effect, especially in the context of very high

sensitivity to the exact definition of what census tracts are included in a floodplain.

One potentially interesting observation is that the coefficient estimates for the year of a hur-
ricane, denoted by t=0, are negative and significant for many floodplain overlap definitions.
This finding has no implication for the potential adverse selection issue addressed in this
paper, but is certainly curious and worthy of a further investigation. We note, however, that
the coefficients during the year of the hurricane are identified over very few originations in

affected areas, and, therefore, cannot be taken as particularly reliable.
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Proportion of census tract within a floodplain

> 0% > 10% > 20% > 40% > 50%
1) (2) (3) (4) (5)
belowLimit: Treatment: T_minus_4 —0.056*** —0.067*** —0.082*** —0.09*** —0.106***
(0.020) (0.019) (0.020) (0.027) (0.023)
belowLimit: Treatment: T_minus_3 —0.016 —0.012 —0.001 0.016 0.045
(0.020) (0.025) (0.028) (0.030) (0.043)
belowLimit: Treatment:T_minus_2 0.018 0.009 0.011 0.029 0.050
(0.016) (0.014) (0.014) (0.024) (0.039)
belowLimit: Treatment:T_minus_0 —0.012 —0.025*** —0.034*** —0.041*** —0.041***
(0.011) (0.007) (0.010) (0.010) (0.012)
belowLimit: Treatment: T _plus_1 0.004 0.011 —0.001 0.013 0.032
(0.008) (0.011) (0.008) (0.016) (0.022)
belowLimit: Treatment: T _plus_2 0.005 —0.006 —0.011 —0.022 —0.003
(0.023) (0.023) (0.022) (0.019) (0.027)
belowLimit: Treatment: T _plus_3 —0.034* —0.042** —0.046** —0.051*** —0.044
(0.018) (0.018) (0.018) (0.024) (0.032)
belowLimit: Treatment: T _plus_4 —0.041*** —0.044*** —0.039*** —0.033* —0.025
(0.011) (0.010) (0.013) (0.017) (0.019)
Observations 1,599,285 618,828 336,096 159,477 114,854

Continued on next page
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Proportion of census tract within a floodplain

> 60% > 70% > 80% > 90% > 95%
(1) (2 (3) 4) (5)
belowLimit: Treatment: T_minus_4 —0.123*** —0.108 —0.165*** —0.238*** —0.225%**
(0.043) (0.064) (0.059) (0.088) (0.083)
belowLimit: Treatment: T_minus_3 0.008 —0.042 —0.026 —0.076 —0.242
(0.049) (0.061) (0.065) (0.062) (0.129)
belowLimit: Treatment: T _minus_2 0.064** 0.026 0.068 0.183** 0.121
(0.031) (0.037) (0.059) (0.069) (0.107)
belowLimit: Treatment:T_minus_0 —0.041** —0.038* —0.128*** —0.113*** —0.291
(0.018) (0.023) (0.032) (0.038) (0.172)
belowLimit: Treatment: T _plus_1 0.059*** 0.052** 0.038 0.041 —0.054
(0.021) (0.022) (0.029) (0.033) (0.105)
belowLimit:Treatment: T _plus_2 —0.008 —0.014 —0.032 —0.054 —0.097
(0.036) (0.052) (0.051) (0.077) (0.103)
belowLimit: Treatment: T _plus_3 —0.07** —0.079** —0.062 —0.152* —0.141
(0.027) (0.037) (0.063) (0.091) (0.093)
belowLimit: Treatment: T _plus_4 —0.015 —0.015 —0.064 —0.071 0.067
(0.024) (0.032) (0.042) (0.085) (0.183)
Observations 74,788 51,697 30,001 16,615 9,114
Note: Clustered standard errors in parenthesis. *p<0.1; **p<0.05; ***p<0.01

Table 6: Table 6 reports the estimation results for the last of the three cases in which we find positive and significant coefficients
following a hurricane. In this case, we restrict the sample to originations within floodplains only. Our main data source, HMDA,
does not identify whether an origination is in a floodplain. Instead, we determine if origination is in a floodplain if the census
tract in which it is located overlaps with a floodplain. We report the results for various overlap definitions — from 0 to 95 percent.
While the table reports several positive and statistically significant coefficients for certain overlap definitions, particularly in
the 60 and 70 percent cases, this significance is not robust to alternative overlap definitions. Therefore, these results are also of
limited economic significance.

In short, the three cases in which we identify potentially positive and statistically significant
coefficients are likely due to spurious relationships and cannot be taken as an indication of
changes in origination behavior following a hurricane. On the contrary, their high sensitivity

to model and sample specification is consistent with our base case conclusion of no effect.

Even in the unlikely event that the above statistically significant coefficients are not spurious
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and hint at an actual change in lender behavior following a hurricane, such a change would
be present in only very specific circumstances. This does not alter our main conclusion that

there is no identifiable system-wide effect.

4.3 Comparison to O&K’s results

Whenever possible, we have followed the model specification and data selection utilized
by O&K. However, we reproduce O&K’s original results only when using both their data
selection and their model estimation code exactly. Instead, as reported above, our base case

analysis suggests no evidence of changes in origination behavior or adverse selection.

While our work follows O&K’s overall approach and econometric method, our analysis is
distinct in several details, as we have pointed out in the data selection and methodology
sections above. Beyond those technical details, our work differs from that of O&K in two

important ways.

First, the HMDA data contains loan amounts rounded to the nearest $1000, while the FHFA
loan limits are reported to the dollar. For instance, the standard conventional loan limit in
2005 was $359,650. Loans originated near or at the limit that year are reported in the HMDA
data as having loan amount of “360” to denote a rounded amount of $360,000. Thus, a
direct comparison of the loan amount ($360,000) to the conventional limit ($359,650) results
in misclassification of the loan as being above-limit while it is at or below the conventional
limit in reality. The following year, 2006, the conventional limit changed to $417,000, which
would not generate any misclassification. In this example, the originations below the limit
would appear to have substantially increased from 2005 to 2006 even though there was no
such increase. While this is only one specific example, it is noteworthy because five hurricanes
occurred in 2005, and the apparent increase in below-limit originations could incorrectly be

attributed to an effect from these hurricanes rather than to the change in loan classification
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between 2005 and 2006.

In the code O&K provided to us, we believe the incorrect comparison occurs on line 80 of

file named:

2_analysis_hmda/04_make_hmda_event_study_data_set.R

This line is as follows:

diff_log_loan_amount = log_loan_amount - log(effective_loanlimit/1000)

This line compares the loan amount from the HMDA data (which is rounded to the nearest
$1000) to the effective loan limit, which is provided to the dollar. Substituting a loan
amount and conventional limit of $359,650 in the line of code above generates the following

expression:
diff_log_loan_amount = log(360) - log(359650/1000)

This calculation generates a positive number, which in turn incorrectly classifies the loan as

being above the conventional limit.

The correct comparison would round the conventional loan limit in the second term above
to the nearest $1000, so that the variable "diff_log_loan_amount" becomes zero and the

loan is correctly classified as being at or below the FHA conventional limit.

Figure 1 quantifies the scope of the mis-classification. The figure reports the number of
correctly classified and mis-classified originations in the + /- 5% of conventional limit sample.
In our analysis, we explicitly handle this discrepancy in the formatting of the source data

and thus appropriately classify all loans as above- or below-limit.

The extent of this mis-classification is also evident in Figure 5 provided by O&K. Below

we reproduce this figure from the original paper (left panel) and also provide an equivalent
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Figure 1: The figure depicts the number of correctly classified and mis-classified originations from the +/-5% sample.

year state_code county_code county_name chsa_number state Replication Limit (single-unit) O&K Limit

2012 9 1 FAIRFIELD 4860 cT 601450 625500
2012 12 21 COLLIER Ba940 FL 448500 625500
2012 12 87 MONROE %8580 FL 529000 625500
2012 13 133 GREENE %9999 GA 515200 625500
2012 24 3 ANMNE ARUNDEL 2580 MD 494500 625500
2012 24 5 BALTIMORE " 2580 MD 454500 625500
2012 24 9 CALVERT 7900 MD 625500 625500
2012 24 13 CARROLL 2580 MD 454500 625500
2012 24 17 CHARLES 7900 MD 625500 625500
2012 24 21 FREDERICK 77900 MD 625500 625500
2012 12 23 COLUMBIA %9380 FL 417000 417000

Table 7: The table provides an example of several counties which had a variety of conforming limits in 2012. In O&K’s analysis,
these counties have the same incorrect limit of $625,500.

figure that correctly classifies all originations (right panel). The original figure (left) has
an unusually high observation count just above the limit. Since almost no loans are ever
originated just above the conventional limit, the count above the limit should be very low.

Our replication (right) shows that indeed this count is very low.

The second point of substantive departure from O&K’s methodology is that we use the
conventional loan limits as provided by the FHFA. Those limits differ by year and county.
Table 7 provides an example of several high-cost counties who had a variety of conforming
limits in 2012. In O&K’s analysis, all these counties have the same incorrect conforming

limit of $625,500, which is simply 50% higher than the standard limit of $417,000.
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Figure 2: The figure reproduces O&K’s Figure 5 (left) and our replication (right). The original figure shows a high count of
originations above the limit, which is not realistic. Our replication shows that the originations just above the limit are very
low, as expected.
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In our work, we match each origination to the conventional limit applicable to it at the time
of approval, origination, or securitization. This, in turn, provides for the correct classification

of loans as above- or below-conventional limit.

The above two differences are important. Using both the incorrect two-category conventional
limits and the incorrect comparison procedure that O&K use results in positive and signif-
icant coefficients very similar to what they report. This occurs both in our own data and
in the data O&K use. However, using either the correct FHFA conventional limits or the
correct rounding procedure, or both, eliminates the significance of the results both in our

own data and in O&K’s data.

To summarize the impact of the rounding and conventional limits we replicate O&K’s code
as closely as possible, including the use of zip codes and limiting the sample to the original
events. Table 8 reports the results of this analysis using incorrect and correct rounding and
incorrect and correct conventional loan limits. The table reports the coefficient estimates and
their significance for originations for time T+1 at the +/-5% sample. The first row reports
the coefficients using the incorrect rounding procedure that O&K use with various high-cost
conventional limits. For those counties, O&K assign a limit of 1.5 times the standard limit.
We repeat the analysis using this limit as well as limits of 1.3 times, 1.4 times, 1.6 times and
1.7 times the standard limit. The last column represents the coefficient estimate using the

correct limits.

The second row of Table 8 reports the coefficients using a correct rounding procedure, again
for various incorrect limits and the correct limit. The bottom right coefficient of 0.004 is the
outcome of correct rounding and correct conventional limits, but retaining all other aspects

of O&K’s approach and data.

The first row, third column coefficient of 0.044 matches exactly the T+1 coefficient for

originated loans reported in Table 2 of O&K, which is also replicated in the appendix here.
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The last coefficient on the second row, 0.004, is analogous to the coefficient for T+1 for

originations in our base case reported in Table 2 above.

Table 8 shows that using the incorrect rounding and incorrect high-cost limits generates
the positive and significant coefficient that O&K report. This occurs for a wide range of
incorrect high-cost conventional limits, in addition to the limit O&K use. Using the correct
conventional limits (last column) or the correct rounding procedure or both eliminates the

significance of the coefficient of interest. 7

High Cost County Conventional Loan Limit

1.3x 1.4x 1.5x (O&K) 1.6x 1.7x Correct Limits (FHFA)
Incorrect Rounding (O&K) 0.031** 0.033*** 0.044** 0.023*** 0.023* 0.026*
(0.012) (0.007) (0.016) (0.007) (0.011) (0.015)
Correct Rounding 0.000 0.005 0.021 —0.001 —0.006 0.004
(0.016) (0.009) (0.022) (0.009) (0.016) (0.018)

*p<0.1; **p<0.05; ***p<0.01

Table 8: The table reports the outcome of matching O&K’s analysis as closely as possible, except for the conventional limits
and the rounding procedure. The first row, third column coefficient of 0.044 matches O&K’s analogous coefficient exactly. The
bottom right coefficient is analogous to our base case reported above, and uses both the correct limits and the correct rounding

5 Conclusion

We document that the claims presented O&K are based on two incorrect treatments of
the data. Correcting either of the two inaccuracies, or both, reverses the original O&K
results. We find this both in O&K’s original data and code and in our own independent

implementation.

16While the bottom right coefficient of 0.004 is very close to the analogous coefficient reported in Table
2 above, they are not identical because in Table 2 we present our best approach, while in Table 8 we have
attempted to replicate the O&K procedure as closely as possible in all aspects other than the rounding and
the conventional limits.

1"The coefficient estimate when using incorrect rounding but correct conventional limits is significant at
the 10% level in this particular implementation. However, small changes in the specification removes even
this level of significance.
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This finding means that we have no evidence that lenders change their origination behavior in
affected areas following a major hurricane. Therefore, adverse selection in the securitization

process is not detectable in the data.

While we find no evidence of risk transfer or adverse selection in the data, the hypothesized
risk transfer and adverse selection could occur in the future. Increased frequency and mag-
nitude of extreme climate events makes the assessment of their risk easier going forward and
increases the incentives to transfer it to other market participants. Therefore, there is a clear
need to design and implement mechanisms and procedures that monitor for potential risk

transfer going forward.
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7 Appendix

For ease of reference, in this Appendix we reproduce the main results table from O&K’s

paper.
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We further replicate our base case results provided in Table 2 above using zip codes as the
unit of analysis. While we see no advantage to using zip codes, we provide the table to

facilitate comparison to O&K’s results.
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